
Absolute Extreme Values

Recall from Calculus I: If the function fx is continuous on an interval a,b, then the
function attains both an absolute minimum value, m, and an absolute maximum value, M,
on that interval. (This is known as the Extreme Value Theorem.) In other words, there
exist values x1 and x2 in the interval such that fx1  m, fx2  M, and m  fx  M for all
x  a,b. The values m and M are referred to as the absolute extreme values of the
function for the interval.

The interval a,b is a bounded and closed set of real numbers. It is bounded because it
has finite length. In contrast, an interval such as 0, is unbounded (it has infinite length).
a,b is closed because it includes its boundary points (i.e., its endpoints). In contrast, the
interval 0,5 is not closed (although it is bounded).

A continuous function may not have absolute extreme values on an interval that is either
unbounded or not closed. For example, the function fx  x3 does not have absolute
extreme values on the interval ,, and the function fx  tanx does not have absolute
extreme values on the interval  

2 , 
2 .

Suppose fx is continuous on a,b. If x is a point in a,b at which f attains an absolute
extreme value, then x must be either a boundary point (i.e., an endpoint) of the interval or a
critical value (i.e., a value of x for which fx is either zero or undefined). Thus, to find the
function’s absolute minimum value m and absolute maximum value M for the interval,
evaluate the function at a, at b, and at every critical value between a and b. The smallest
result must be m and the largest result must be M.

Example: Let fx  x3  x2  5x, and let a,b  0,4. fx  3x2  2x  5  3x  5x  1,
so 5

3 and 1 are critical values. Only the former belongs to 0,4. We now evaluate the
function:
 f0  0
 f 5

3    175
27  6.48

 f4  28
Thus, we have m   175

27 , occurring at x  5
3 , and M  28, occurring at x  4.

Now let us adapt the above theory to a function with a two-dimensional domain.

The Extreme Value Theorem: For the function fx,y, let S be a subset of its domain that
is closed and bounded. (Saying it is closed means it includes its boundary points. Saying it
is bounded means it can be contained within a circle of finite radius.) If fx,y is continuous
on S, then the function attains both an absolute minimum value, m, and an absolute
maximum value, M, on S. In other words, there exist points x1,y1 and x2,y2 in S such
that fx1,y1  m, fx2,y2  M, and m  fx,y  M for all x,y  S.

If x,y is a point in S at which f attains an absolute extreme value, then x,y must be
either a boundary point of S or a critical point (i.e., a point for which f is either zero or
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undefined). Thus, to find the function’s absolute minimum value m and absolute maximum
value M for S, evaluate the function at at every critical point in S, and also find the function’s
extreme values on its boundary. The smallest result must be m and the largest result must
be M.

Problem 1: Let fx,y  x2  2xy  2y, and let S  0,3  0,2. f is continuous on S
because it is a polynomial function. f   2x  2y,2x  2 , which is never undefined and
which is 0 at only one critical point, 1,1, which does lie in S. f1,1  1. Now we must find
the function’s extreme values on its boundary. S is a closed rectangle with four edges:
1. The vertical line segment with endpoints 0,0 and 0,2, which is a segment of

the vertical line x  0. Along this line, fx,y  2y. For y  0,2, the minimum
value is 0 (occurring when y  0 and the maximum value is 4 (occurring when
y  2.

2. The horizontal line segment with endpoints 0,2 and 3,2, which is a segment of
the horizontal line y  2. Along this line, fx,y  x2  4x  4. For x  0,3, the
minimum value is 0 (occurring when x  2 and the maximum value is 4 (occurring
when x  0.

3. The vertical line segment with endpoints 3,0 and 3,2, which is a segment of
the vertical line x  3. Along this line, fx,y  9  6y  2y  4y  9. For y  0,2,
the minimum value is 1 (occurring when y  2 and the maximum value is 9
(occurring when y  0.

4. The horizontal line segment with endpoints 0,0 and 3,0, which is a segment of
the horizontal line y  0. Along this line, fx,y  x2. For x  0,3, the minimum
value is 0 (occurring when x  0 and the maximum value is 9 (occurring when
x  3.

Thus, on the boundary of S, f attains a minimum value of 0, occurring at 0,0 and 2,2,
and a maximum value of 9, occurring at 3,0. These values are lower and higher than the
value 1 ocurring at the critical point. Consequently, on the set S itself, f attains a minimum
value of 0, occurring at 0,0 and 2,2, and a maximum value of 9, occurring at 3,0.

In the next problem, we consider an application of these concepts to a relatively simple
engineering task. However, the mathematics is surprisingly complicated. Also, the problem
does not fit neatly into the framework we have so far considered...

Problem 2: A cardboard box has the shape of a rectangular box without a lid. The total
area of cardboard used to construct the box (i.e., the surface area of the box) is 12 square
meters. Find the dimensions that maximize the volume of the box.

Solution:

Say the box has length x, width y, and height z. Then its volume is V  xyz and its surface
area is S  xy  2xz  2yz. Setting the latter equal to 12 and solving for z, we get z  12  xy

2x  2y
.

Substituting this in place of z in the formula for V, we get Vx,y  xy 12  xy

2x  2y
 12xy  x2y2

2x  2y
.

x, y, and z must be positive. It follows that 12  xy  0, xy  12, y  12
x . The domain of V is

thus x,y  x  0 and 0  y  12
x . This region is neither closed nor bounded, so the
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Extreme Value Theorem is not applicable. Nonetheless, it can be shown that V does attain
an absolute maximum value in this region. The absolute max must occur at a critical point,
where V  0 or is undefined. It cannot occur at a boundary point, because the region’s
boundary points are excluded from the region (i.e., it is an open region).

To find Vx and Vy, we must use the Quotient Rule.

Vx  12y  2xy22x  2y  12xy  x2y22

2x  2y2
 24xy  24y2  4x2y2  4xy3  24xy  2x2y2

4x  y2
 24y2  2x2y2  4xy3

4x  y2


2y212  x2  2xy

4x  y2
 y212  x2  2xy

2x  y2
. By similar analysis, Vy  x212  2xy  y2

2x  y2

For either partial derivative, since x and y are positive, the denominator is never zero.
Hence, on the domain of V, V is never undefined.

Each partial derivative is equal to zero when its numerator is equal to zero.
 For Vx  0, we have y2  0 or 12  x2  2xy  0. We rule out the former since y is

positive.
 For Vy  0, we have x2  0 or 12  2xy  y2  0. We rule out the former since x is

positive.

Matching 12  x2  2xy  0 with 12  2xy  y2  0, we obtain the equation
12  x2  2xy  12  2xy  y2, or x2  y2  0, or x  yx  y  0, implying x  y or x  y.
We rule out the latter since x and y are both positive. Hence x  y.

If x  y, the equation 12  x2  2xy  0 becomes 12  x2  2x2  0, or 12  3x2  0, or
32  x2  x  0. Since x is positive, we must have x  2, hence y  2 and z  8

8  1.

Furthermore, if x  y, the equation 12  2xy  y2  0 becomes 12  2x2  x2  0, or
12  3x2  0, yielding the same solution.

So 2,2 is the only critical point in the domain of V.

We could confirm that V has a relative maximum at 2,2 by means of the Second
Derivative Test, but this involves finding Vxx, Vyy, and Vxy, which are complicated in this
case. Alternatively, we could examine the surface z  12xy  x2y2

2x  2y
graphically, using computer

software or a sufficiently powerful graphing calculator, to confirm this.

Generally speaking, a relative maximum is not necessarily an absolute maximum, but it can
be, and in this case it is. This can be seen by examining the surface z  12xy  x2y2

2x  2y

graphically, but it can also be inferred on the basis that V is continuous on its domain and
has exactly one local extreme value, occurring at a unique critical point.

Hence, the maximum volume is V2,2  1222  2222

22  22
 48  16

8  32
8  4. We could also

obtain this value simply by using the dimensions previously determined (i.e., length 2, width
2, height 1) and computing length times width times height.
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